Референс дизайн TIDA-00095 обеспечивает законченное решение для измерения и обработки температуры с 2-х, 3-х и 4-х проводного резистивного детектора температуры и передачи показаний по токовой петле 4…20 мА. Решение может быть использовано в приложениях обработки измерений в промышленной автоматизации, полевых передатчиках и автоматизации зданий. При ошибке измерения температуры менее чем 0,017 °C в диапазоне температур -200…+850°C, сверхнизким потреблением 1,4 мА (включая ток через резисторный датчик температуры) и соответствие IEC61000, этот дизайн значительно уменьшает время проектирования и разработки высокоточных систем передачи температуры. Он также адресует системный уровень калибровки смещения и усиления, которые могут быть использованы для улучшения точности АЦП и ЦАП, а также осуществлять линейную интерполяцию для адресации нелинейного элемента (резистивного термодетектора).
Цель данной разработки в предложении законченного решения питания от изолированной токовой петли 4-20 мА передатчиков или других маломощных приложений с ограниченным входным током. В нем рассматриваются ключевые требования приложений, такие как работа с широким диапазоном входного напряжения, изолированные и неизолированные выходы с малым уровнем шума и предлагается полный набор функций защиты. Популярный формат конструкции – двухслойная плата с односторонним монтажом, множество контрольных точек на плате и полная документация облегчают тестирование, модификацию и оптимизацию пользователем. Смотрите видеообзор TIDA-00349, охватывающий в том числе и топологию изолированного питания, используемого в TIDA-00167.
Базовый проект изолированного устройства для передачи выходного сигнала термопары с питанием по контуру представляет собой системное решение для точных измерений термопарой типа K в изолированных устройствах с токовой петлёй 4-20 мА. Данный проект рассматривается как отладочный модуль для быстрого прототипирования и разработки конечной продукции в сферах управления процессами и автоматизации производства. Потенциальные сложности в применении термопары в качестве датчика температуры заключаются в малых значениях выходных напряжений, низком уровне чувствительности и нелинейности; к тому же по причине того, что в промышленности распространены разности потенциалов более 100 В, термопара и схема преобразования сигналов должны быть гальванически развязаны. В перечень файлов проекта включены замечания по проекту, блок-схемы, схема электрическая принципиальная, перечень элементов, трассировка платы, файлы Altium, Gerber и прошивка MSP430.
Ознакомьтесь с видеообзором TIDA-00349, в котором реализована топология изолированного питания, идентичная той, что использована и в проекте TIDA-00189, здесь.
Главным акцентом данного проекта является двунаправленная связь через гальваническую развязку для применений с питанием от контура. Проблема подобного решения заключается прежде всего в ограниченности габаритов в пределах сенсорных передатчиков и - в случае систем с питанием от контура – в общем уровне потребляемого тока.
Для портативных приложений двухпроводной токовой петли 4…20 мА общее потребление питания должно быть тщательно продумано. Традиционный подход использования моста возбуждения высокого напряжения и операционного усилителя для достижения полного диапазона входных напряжений АЦП увеличивает количество электронных компонентов в системе, что ведет за собой увеличение стоимости изделия и его энергопотребелния. Кроме того, необходим внешний стабилизатор напряжения для возбуждения мостового датчика и питания микроконтроллера.
Основной идеей референс дизайна TIDA-00247 является создание недорогого устройства с низким энергопотреблением. В этом решении используется встроенный АЦП и операционные усилители самого микроконтроллера. Для сокращения стоимости АЦП/ ЦАП в качестве источника опорного напряжения используют основной источник питания вместо использования внешней опоры или применения более дорогого АЦП/ ЦАП, включающего в себя встроенный источник опорного напряжения. Использование встроенной периферии микроконтроллера позволяет уменьшить количество внешних компонентов и уменьшить стоимость. Этот референс дизайн основан на микроконтроллере смешанных сигналов MSP430F2274.
В базовом проекте TIDA-00483 демонстрируется подсистема с токовой петлёй 4-20 мА, которая способна измерять параметры окружающей среды и передавать информацию о температуре, влажности и окружающем свете по петле. В небольших габаритах данного проекта уместились все датчики, фильтры и управляющая цепь для расчёта и передачи данных с датчиков. Данный базовый проект предназначен для измерения параметров процессов в системах автоматизации предприятия, выносных передатчиках и системах автоматизации здания. Все датчики, МК и модули связи питаются от токовой петли, потребляя менее 3,5 мА.
Данный базовый проект имеет характер аппаратно-программного решения.
В базовом проекте рассматривается новая 2-проводная миниатюрная ИС температурного датчика с цифровым выходом и интерфейсом подсчёта импульсов, которая позволяет повысить надёжность и значительно упростить дизайн архитектуры гальванической развязки для передачи питания и однонаправленных данных посредством одного низкопрофильного трансформатора и дистанционной работы, с целью предоставления системным разработчикам новой экономически эффективной и простой альтернативы системы надёжного и высокопрецизионного измерения температуры. Кроме того, благодаря меньшему количеству источников ошибок упрощается расчёт ошибок системы. При выборе датчика, необходимого для выполнения заданных задач, основными факторами являются стоимость, точность измерения, габариты и простота сопряжения с прочими элементами схемы, и система данного базового проекта идеально удовлетворяет всем данным требованиям. Благодаря максимальному значению измеренной ошибки 0,25°C в температурном диапазоне от -50°C до 150°C, рейтингу функциональной изоляции 400 В (среднеквадратичное значение) и предварительному соответствию требованиям тестирования согласно стандарту IEC61000-4-4 данный базовый проект позволяет значительно уменьшить время разработки высокоточных систем измерения температуры.
Данный базовый проект имеет характер аппаратного решения.
В проекте TIDM-TIA для преобразования тока с фотодиода в напряжение используется интегрированный в микроконтроллер MSP430F2274 операционный усилитель. Данный проект может быть использован в качестве датчика света для ряда применений. Прямое подключение к интегрированному АЦП MSP430F2274 позволяет анализировать напряжения и использовать их нужным образом. Данный трансимпедансный усилитель выполнен в малом размере благодаря использованию интегрированного в MSP430F2274 операционного усилителя, что приводит к созданию решения на базе одного кристалла для многих промышленных и потребительских применений.
Данное проверенное решение демонстрирует очень простой и точный способ измерения температуры термопарой. В нем описываются необходимые сглаживающие фильтры и резисторы смещения для проведения диагностики датчика. В данном примере также описывается новый способ компенсации холодного спая с помощью встроенного в ADS1118 датчика температуры. Для линеаризации данных в решении продемонстрирован очень простой алгоритм, который может быть реализован в большинстве микроконтроллеров.
Решение проверено и включает в себя:
Этот проверенный TI дизайн предоставляет теоретические основы, выбор элементной базы, моделирование, полную схемотехнику печатной платы, BOM и результаты измерений производительности от однополярного источника питания 3-проводной системы сбора показаний RTD, который точно измеряет температуру от -200 °C до + 850 °С. Входное напряжение и опорное напряжение помещают в логометрическую конфигурацию для уменьшения ошибок от шума и дрейфа и улучшения общей точности системы. ADS1247 упрощает фронт-энд решение путем объединения необходимых источников тока, программируемого усилителя и мультиплексора с цифровым управлением на одном чипе. "Chopping" метод используется для минимизации последствий несоответствия между двумя источниками тока. LDOTPS7A4901 с регулируемым выходом и высоким PSRR предлагается в качестве альтернативы питания над существующим USB предложением для сглаживания пульсаций питания и улучшения точности системы.
Данный модуль преобразования сигнала датчика с мостовой схемой включения генерирует управляемый токовый выход для заземлённой нагрузки. В первом звене данного модуля использован усилитель с программируемым коэффициентом усиления (PGA) со смешанными сигналами для линеаризации и температурной компенсации дифференциального напряжения датчика с мостовой схемой включения. Во втором звене выходное напряжение PGA преобразуется в ток, который затем передаётся по стандартной токовой петле 4 мА – 20 мА. Дополнительная цепь защищает модуль от электростатического разряда (ESD), быстротекущих электрических переходных процессов (EFT), излучаемых и наведённых электромагнитных помех (EMI), а также от всплесков напряжения при ударе молний.
Базовый проект имеет характер аппаратно-программного решения.
Данный прецизионный испытанный проект TI представляет собой аппаратно компенсированную систему сбора данных с 3-Wire терморезистора, которая точно измеряет температуру от 0 до 100 °C. Входное и опорное напряжения находятся в ратиометрической конфигурации для уменьшения ошибок от шума и дрейфа и улучшения общей точности системы. Аппаратная реализация упрощается благодаря использованию ADS1247, в который интегрированы необходимые источники тока, программируемый усилитель и дискретно управляемый мультиплексор. Источники тока работают независимо друг от друга для минимизации несоответствия между двумя источниками. Для дальнейшего увеличения точности системы рекомендуется LDO с регулируемым выходом и высоким коэффициентом подавления пульсаций напряжения питания TPS7A4901 как замена установленному USB-источнику.
В данном лицензированном базовом проекте TI реализован двухканальный модуль с аналоговыми выходами по напряжению и току. Два выхода являются независимыми и могут быть настроены как в режиме источника, так и в режиме нагрузки на выдачу напряжения или тока промышленных стандартов выходов. Несмотря на то, что номинальными выходами данного проекта являются ±10 В и ±24 мА, диапазоны выходов 0 В - 5 В, 0 В - 10 В, ±5 В, ±10 В, 4 мА - 20 mA, 0 мА - 20 мА, 0 мА - 24 мА, ±20 мА, ±24 мА могут быть получены путём подбора номиналов внешних резисторов.
Данный проект включает в себя внешние компоненты защиты, необходимые для успешного прохождения испытаний по стандартам IEC61000-4-2/3/4/5/6, а также данные о результатах тестов. Схема защиты не вносит негативных эффектов в работоспособность проекта, и результаты тестов показывают, что типовое значение неоткалиброванных ошибок составляет менее 0,1% во всём диапазоне измерений, а типовое значение откалиброванных ошибок составляет менее 0,01% во всём диапазоне измерений.
Для корректного отображения условий поставки определите Ваш город. Начните вводить наименование населенного пункта и выберите нужный вариант из выпадающего списка