Двигатель мотора крыши

Описание:
В проекте TIDA-00677 от компании TI представлено решение автомобильного светодиодного заднего фонаря (с задним стоп-сигналом, сигналом поворотника и сигналом заднего хода) на базе линейного LED-драйвера TPS92630-Q1, питаемого понижающим преобразователем (TPS65321-Q1), который в свою очередь питается непосредственно от напряжения автомобильной батареи через диод системы интеллектуальной защиты от подключения к батарее с обратной полярностью. Данное решение подверглось ЭМС-тестированиям на уровень излучаемых ЭМП, а также тестированиям с помощью импульсов согласно требованиям стандартов CISPR25 и ISO 7637-2. В руководстве пользователя, прилагаемом к данному проекту, содержится больше информации о потенциальных возможностях по снижению его стоимости и о его эффективности (в частности, уровне рассеиваемой мощности и тепловых характеристиках системы). Если Вас интересует схожий проект, управляемый повышающим преобразователем, обратитесь к проекту TIDA-00678. Если же Вас интересует схожий проект, управляемый непосредственно автомобильной батареей, обратитесь к проекту TIDA-00679.

Базовый проект имеет характер аппаратного решения.
Возможности:

  • Оптимизированный по эффективности проект
  • Прошёл ЭМС-тестирования на уровень ЭМП согласно требованиям стандарта CISPR-25
  • Не работает в AM-диапазоне частот
  • Способен выдержать сброс нагрузки автомобильного генератора
  • Интеллектуальная система защиты от подключения к батарее с обратной полярностью

Документация:
  • Даташит
  • Схемотехника
  • BOM
  • Топология платы
Описание:
Функция защиты от включения с обратной полярностью является стандартной функцией защиты для систем в составе автомобильной техники. Когда кабели батарейного питания отключаются и затем подключаются заново, существует вероятность того, что будет осуществлено неправильное подключение к клеммам батареи. Подобная ошибка может привести к повреждению компонентов в составе электронного блока управления (ЭБУ). Для предотвращения повреждения ЭБУ используется функция защиты от включения с обратной полярностью. С данной целью также могут использоваться диоды Шоттки, но подобный подход характеризуется постоянно высокими потерями мощности. В данном проекте для обеспечения защиты от включения с обратной полярностью и уменьшения рассеиваемой мощности используется LM5050-Q1 наряду с N-канальным полевым транзистором.

Базовый проект имеет характер аппаратного решения.
Возможности:

  • Защита от подключения с обратной полярностью к батарее, рассчитанной на напряжение 12 В / 24 В / 48 В
  • Контроллер со схемой "OR-ing" для подключения к некольким батареям
  • Увеличивает КПД систсемы и обеспечивает крайне низкий уровень энергопотребления
  • Заменет собой диоды Шоттки, тем самым уменьшая рассеиваемую мощность
  • Соответствует требованиям стандартов ISO7637-2 и ISO16750-2
  • /ul>

Документация:
  • Даташит
  • Схемотехника
  • BOM
  • Топология платы
Описание:
The TIDA-01389 is a small-footprint motor control module intended for sunroof and window lift applications. This TI Design uses the DRV8703-Q1 gate driver with an integrated current-shunt amplifier alongside two dual-package automotive-qualified MOSFETs, to create a very small power stage layout compared to typical relay solutions. This design also includes two of TI’s DRV5013-Q1 latching hall sensors, which are used to encode the motor position.
Возможности:

15-A motor drive Low component count Anti-pinch detection Reverse battery protection 2-bit hall encoder Motion profiling using pulse width modulation (PWM) input

Документация:
  • Даташит
  • Схемотехника
  • BOM
  • Топология платы
  • Тестирование
Описание:
This reference design uses capacitive sensing to detect a kicking motion indicating the user's desire to activate a power lift-gate, power trunk, or power sliding door on an automobile. Capacitive sensing allows flexible sensor placement and a large kick-sensitive zone. The high-resolution and low power dissipation make this design applicable to automotive hands-free closure systems where gesture detection and low current from the battery are critical.
Возможности:

Two high-resolution capacitive sensors Operates from 12V automotive battery Detects kicks for distances up to 50cm Low quiescent current Simple microcontroller interface This reference design is tested and includes hardware, test results, and a getting started guide

Документация:
  • Даташит
  • Схемотехника
  • BOM
  • Топология платы
Описание:
The demand to retain memory on the position of the seat, window, sliding door, mirror, lift-gate, and others driven by that motor has increased as small motors within the modern automotive vehicle continue to evolve. Existing solutions utilize multiple magnetic sensors attached to the body of a motor to provide a feedback loop to the motor control module. A sensorless approach provides redundancy for existing solutions and, in some cases, removes the requirement for motors with sensors attached. The sensorless approach has become increasingly popular through the implementation of an in-line, current-sense signal-conditioning circuit. This reference design provides a solution that is easily modifiable for many automotive motor systems that control position measurement.
Возможности:

Configurable for many DC motor solutions -14V to 80V wide common mode input range for in-line motor current sensing Operational for typical 9V to 18V battery supply Simple interfacing with MSP430™ LaunchPad™ Development Kit for digital capture

Документация:
  • Даташит
  • Схемотехника
  • BOM
  • Топология платы
Описание:
The TIDA-01428 reference design implements a 1-A, wide-VIN, buck converter to 3.3 V followed by a compact, low-input voltage, fixed 5-V boost converter for powering a controller area network (CAN) physical layer interface. The design has been tested for CISPR 25 radiated emissions and conducted emissions using the voltage method and for immunity to bulk current injection (BCI) per ISO 11452-4 with CAN communication operating at 500 KBPS. The TIDA-01428 is an EMC-vetted power tree plus CAN reference design that can be used in many automotive applications. A system basis chip (SBC) is an integrated circuit (IC) that combines many typical building blocks of a system, which includes transceivers, linear regulators, and switching regulators. While these integrated devices can offer size and cost savings in a number of applications, the integrated devices do not work in every case. For applications where an SBC is not a good fit, it might be beneficial to build a discrete implementation of these aforementioned building blocks thus making a discrete SBC.
Возможности:

Wide-input voltage, fixed 3.3V buck converter Low-input voltage, fixed 5V boost converter Passes Class 4 CISPR 25 radiated emissions Passes Class 4 CISPR 25 conducted emissions Maintains regulated 3.3V and 5V supplies through battery input voltages down to 4.3V Able to survive load dump voltages up to 42V

Документация:
  • Даташит
  • Схемотехника
  • BOM
  • Топология платы
Описание:
The TIDA-01429 reference design implements a wideinput voltage boost controller, followed by a wide input voltage buck converter set to 5.0 V. The 5.0 V supply is used for powering a Controller Area Network (CAN) transceiver and a compact fixed 3.3 V linear drop-out (LDO) regulator for supplying the C2000 microcontroller. This design has been tested for CISPR 25 radiated emissions per absorber lined shielded enclosure (ALSE) method, CISPR25 conducted emissions via the voltage method, and for immunity to Bulk Current Injection (BCI) per ISO 11452-4, all with CAN communication operating at 500 KBPS. This is a electromagnetic compliance (EMC) vetted 3-stage power tree with controller area network (CAN) reference design that can be used in many automotive applications requiring operation with input voltages as low as 3.5 V. A system basis chip (SBC) is an integrated circuit (IC) that combines many typical building blocks of a system, which includes transceivers, linear regulators, and switching regulators. While these integrated devices can offer size and cost savings in a number of applications, the integrated devices do not work in every case. For applications where an SBC is not a good fit, it might be beneficial to build a discrete implementation of these aforementioned building blocks thus making a discrete SBC.

Возможности:

Wide input voltage, adjustable boost controller Wide input voltage, fixed 5V buck converter Passes Class 5 CISPR 25 radiated emissions Passes Class 4 CISPR 25 conducted emissions Maintains regulated 3.3V and 5V supplies through battery input voltages down to 3.5V Able to survive load dump voltages up to 40V

Документация:
  • Даташит
  • Схемотехника
  • BOM
  • Топология платы

Каталог решений

Сравнение позиций

  • ()