Ваш город: Москва
+7 (495) 221-78-04
+7 (812) 327-327-1
Применения > > Complete High Speed, High CMRR Precision Analog Front End for Process Control

Complete High Speed, High CMRR Precision Analog Front End for Process Control (CN0213)

Signal levels in industrial process control systems generally fall into one of the following categories: single-ended current (4 mA-to-20 mA), single-ended, differential voltage (0 V to 5V, 0 V to 10 V, ±5 V, ±10 V), or small signal inputs from sensors such as thermocouples or load cells. Large common-mode voltage swings are also typical, especially for small signal differential inputs; therefore good common-mode rejection is an important specification in the analog signal processing system.

The analog front-end circuit shown in Figure 1 is optimized for high precision and high common-mode rejection ratio (CMRR) when processing these types of industrial-level signals.

Figure 1. High Performance Analog Front End for Process Control (Simplified Schematic: All Connections and Decoupling Not Shown)

The circuit level shifts and attenuates the signals so they are compatible with the input range requirements of most modern single-supply SAR ADCs, such as the AD7685 high performance 16-bit 250 kSPS PulSAR® ADC.

With an 18 V p-p input signal, the circuit achieves approximately 105 dB common-mode rejection (CMR) at 100 Hz and 80 dB CMR at 5 kHz.

High precision, high input impedance, and high CMR are provided by the AD8226 instrumentation amplifier. For high precision applications, a high input impedance is required to minimize system gain errors and also to achieve good CMR. The AD8226 gain is resistor-programmable from 1 to 1000.

A resistive level shifter/attenuator stage directly on the input would inevitably degrade CMR performance due to the mismatch between the resistors. The AD8226 provides the excellent CMR required for both small signal and large signal inputs. The AD8275 level shifter/attenuator/driver performs the attenuation and level shifting function in the circuit, without any need for external components.

Traditionally, sigma-delta ADCs have been used in high resolution measurement systems because signal bandwidths are quite low, and the sigma-delta architecture provides excellent noise performance at low update rates. However, there is an increased trend for higher update rates, especially in multichannel systems, to allow faster per-channel update, or for increased channel density. In such cases a high performance SAR ADC is a good alternative. The circuit shown in Figure 1 uses the AD7685 250 kSPS 16 bit ADC, with the AD8226 high performance in-amp, and the AD8275 attenuator/level shifter amplifier implemented as a complete system solution without the need for any external components.


Используемые компоненты

Заметили ошибку в работе сайта?
Скажите нам об этом