Измерение уровня заряда LiFePo4- аккумуляторов

Точный контроль заряда имеет решающее значение для литий-железо-фосфатных аккумуляторов. В этой статье описывается алгоритм оценки напряжения разомкнутой цепи аккумулятора (OCV), основанный на методе интегрирования токов.
3924
В избранное

Литий-железо-фосфатные аккумуляторы, также известные как LiFeP04 или LFP, используются в приложениях со значительными токовыми нагрузками. При измерении уровня заряда LiFeP04-аккумулятора необходимо соблюдать особую осторожность. В этой статье рассказываются, почему литий-железо-фосфатные аккумуляторы становятся идеальным выбором для некоторых приложений, анализируются особенности, которые следует учитывать при измерении уровня их заряда, а также приводятся результаты испытаний, полученные при использовании микросхем измерения заряда от Maxim.

Рост популярности различных типов литий-ионных аккумуляторов

Доля используемых во всем мире литий-ионных аккумуляторов (Li-ion) с каждым годом увеличивается. Благодаря высокой плотности энергии, низкому саморазряду и незначительному эффекту памяти Li-ion находят применение в широком спектре приложений.

В настоящий момент на рынке представлены литий-ионные аккумуляторы различных моделей, каждая из которых имеет свои уникальные характеристики. Тем не менее, все Li-ion можно разделить на несколько основных групп, отличающихся реализаций химических процессов. У каждого типа литий-ионных аккумуляторов есть достоинства и недостатки, что делает их оптимальными для той или иной области применения.

Особенности LiFeP04-аккумуляторов

Преимущества. Для создания катода LiFeP04-аккумуляторов используется литий-фосфат железа, в то время как анод изготавливается из углерода. LiFeP04-аккумуляторы термически и химически более стабильны, чем аккумуляторы с другими химическими составами. Они не выходят из строя даже при возникновении аварийных ситуаций, таких как перезарядка или короткое замыкание, и не подвержены лавинообразному разрушению при перегреве. Эти аккумуляторы могут использоваться в широком диапазоне температур от −40 до 70°C (и более).

По сравнению с литий-ионными аккумуляторами других типов (например, LCO, LMO, NMC и NCA) LiFeP04-аккумуляторы обеспечивают более длительный срок службы – от 1000 до 2000 циклов заряда-разряда. Ячейки LiFeP04 способны выдерживать воздействие высокого напряжения в течение длительного времени с минимальными последствиями, чем не могут похвастаться другие химические источники тока (ХИТ). Для LiFeP04-аккумуляторов пиковый разрядный ток может достигать очень высоких значений, вплоть до 25°C.

Недостатки. LiFeP04-аккумуляторы имеют низкое номинальное напряжение – всего 3,2 В. Это означает, что их начальная плотность энергии оказывается ниже, чем у LCO, LMO, NMC и NCA. Ячейки LiFeP04 также чувствительны к влаге. Прямой контакт с водой приводит к потере активного лития, в результате чего плотность энергии уменьшается. Адекватную стойкость к влажности имеют только высококачественные аккумуляторы, изготовленные с соблюдением строгого контроля качества. Как и другие виды ХИТ, литий-железо-фосфатные аккумуляторы характеризуются ухудшением параметров при низких температурах.

Типовые области применения. Литий-железо-фосфатные аккумуляторы применяются в самых различных областях. В качестве примеров можно привести: электромобили, электрические газонокосилки, подъемники, мусоровозы, роботы, домашние ИБП, гибридные генераторы, вспомогательные силовые установки для грузовых автомобилей, устройства мониторинга погоды, морские буи, оборудование для нефте- и газопроводов, устройства контроля номерных знаков, игровое оборудование и т.д.

В чем сложность измерения уровня заряда LiFeP04-аккумуляторов?

Литий-железо-фосфатные аккумуляторы имеют чрезвычайно плоские кривые разряда/заряда и, кроме того, обладают гистерезисом, что затрудняет контроль уровня заряда этих элементов. На верхней части рис. 1 представлена типовая кривая заряда/разряда для LiFeP04-аккумулятора. Не сложно заметить, что график имеет продолжительный участок, на котором напряжение изменяется чрезвычайно медленно. На нижней части рис. 1 представлен гистерезис кривой заряда/разряда LiFeP04 и указана ошибка, вызываемая им, при определении уровня заряда (State-of-Charge SOC). Для сравнения на рис. 2 изображена кривая разряда литий-никель-кобальтовой алюминиево-оксидной батареи, которая демонстрирует значительное изменение напряжения в процессе разряда.

Типовая кривая заряда/разряда LiFeP04-аккумулятора (вверху).

Рис. 1. Типовая кривая заряда/разряда LiFeP04-аккумулятора (вверху). Гистерезис в LiFeP04-аккумуляторе и ошибка, вызываемая им, при определении уровня заряда (SOC)

Типовая кривая заряда/разряда литий-никель-кобальтовой алюминиево-оксидной батареи

Рис. 2. Типовая кривая заряда/разряда литий-никель-кобальтовой алюминиево-оксидной батареи

Некоторые другие ХИТ ведут себя примерно также как и LiFeP04-аккумуляторы, например, LiCoPO4-аккумуляторы, LiFeSO4F-аккумуляторы и LiMnPO4-аккумуляторы.

Как точно измерить уровень заряда LiFeP04-аккумулятора?

Существуют методы, позволяющие получать достаточно высокую точность при измерении уровня заряда LiFeP04-аккумуляторов. Как уже было сказано выше, кривая разряда для таких элементов оказывается чрезвычайно плоской. Изменение SOC на 1% приводит к изменению напряжения на разомкнутых клеммах (open-circuit-voltage, OCV) всего лишь на несколько мВ. Кроме того, кривая разряда LiFeP04-ячеек имеет гистерезис. Специальный алгоритм предсказания OCV (не требующий начальных условий, полного заряда или разряда аккумулятора) в сочетании с традиционным методом интегрирования тока, продемонстрировал значительно меньшую чувствительность к напряжению по сравнению с другими алгоритмами, использующими метод интегрирования тока.

Большинство альтернативных методик подразумевает использование начальных параметров аккумулятора и дальнейшую коррекцию с учетом измеренного напряжения. Многие алгоритмы выполняют коррекцию достаточно редко (несколько раз в день). В результате влияние погрешности OCV при измерении SOC оказывается значительным. Любая ошибка при выполнении коррекции обычно фиксируется и, следовательно, сохраняется до следующей коррекции. Из-за этого выбор алгоритма и постоянный контроль напряжения особенно важны для LiFeP04-аккумуляторов. Предлагаемый алгоритм не так сильно зависит от точности измерения напряжения.

Испытания

Мы провели тестирование нового алгоритма оценки OCV с интегрированием токов. Для этого использовался LiFeP04-аккумулятор ANR26650M1-B с номинальной емкостью 2500 мАч. Тщательно отрегулированные датчики продемонстрировали превосходную точность при измерении уровня заряда. Мы выбрали тестовую методику, в которой аккумулятор в течение недели заряжался и разряжался до достаточно глубокого уровня, но без полного разряда или заряда. При таком сценарии измерение SOC является очень сложной задачей не только для LiFeP04-элементов. Как видно из графиков, алгоритм демонстрировал погрешность не более 2% на протяжении всего цикла испытаний (рис. 3,4,5).

Результаты испытаний – графики напряжения, тока, SOC, погрешность SOC и температуры. Погрешность не превышает 2%

Рис. 3. Результаты испытаний – графики напряжения, тока, SOC, погрешность SOC и температуры. Погрешность не превышает 2%

Благодаря сложному алгоритму вычисления SOC, погрешность измерения не превысила 2% даже при проведении месячных испытаний, в ходе которых аккумулятор не достигал полного разряда или полного заряда

Рис. 4. Благодаря сложному алгоритму вычисления SOC, погрешность измерения не превысила 2% даже при проведении месячных испытаний, в ходе которых аккумулятор не достигал полного разряда или полного заряда

Погрешность измерения SOC не превышает 2% даже при -5 °C

Рис. 5. Погрешность измерения SOC не превышает 2% даже при -5 °C

Примеры интегральных схем для измерения уровня заряда LiFeP04-аккумуляторов

При проведении тестовых испытаний мы использовали семейство микросхем MAX172xx. В отличие от обычных литий-кобальтовых ячеек, кривая OCV/ SOC для LiFeP04-аккумуляторов имеет протяженный плоский участок. В результате традиционные алгоритмы расчета SOC оказываются весьма чувствительными к точности измерения напряжения OCV.

Чтобы алгоритм измерения SOC обеспечивал приемлемую точность, необходимо использовать для расчетов только данные, получаемые за пределами пологой запрещенной зоны. Поэтому алгоритм в MAX172xx использует только циклы заряда и разряда, которые выходят за пределы этой запрещенной зоны (например, от 20% до 72%).

На рис. 6. представлена кривая OCV-SOC для LiFeP04-аккумулятора с указанием запрещенной области.

Диаграмма OCV-SOC для LiFeP04-аккумулятора с указанием запрещенной области

Рис. 6. Диаграмма OCV-SOC для LiFeP04-аккумулятора с указанием запрещенной области. Эта часть разрядной кривой не используется при расчете полной емкости

Чтобы настроить MAX172xx для работы с LiFeP04-аккумуляторами, необходимо выполнить следующие действия:

  1. Отправить аккумулятор инженерам Maxim для исследования. Инженеры создадут математическую модель аккумулятора.
  2. Установить бит enSC в регистре nNVCfg1 (1B9h), чтобы активизировать режим работы с LiFeP04-аккумуляторами и выполнить блокировку запрещенной зоны.
  3. Загрузить оставшуюся часть модели (см. руководство пользователя User Guide 6260 MAX1720x/MAX1721x Software Implementation Guide).

MAX17055 и MAX1726x также поддерживают работу с LiFeP04-аккумуляторами после дополнительной адаптации. Чтобы обеспечить высокую точность при измерении SOC, необходимо выполнить тестовые испытания и создать модель для конкретной модели аккумулятора. Эти микросхемы имеют поддержку специального алгоритма, предназначенного для работы с LiFeP04 и другими аккумуляторами с плоской кривой заряда-разряда.

Чтобы настроить MAX1726x и MAX17055 для работы с  LiFeP04-аккумуляторами, необходимо выполнить следующие действия:

  1. Отправить аккумулятор инженерам Maxim для исследования. Инженеры создадут математическую модель аккумулятора.
  2. Запишсать 0x0060 в регистр ModelCFG (DBh), чтобы активизировать режим работы с LiFeP04-аккумуляторами и выполнить блокировку запрещенной зоны.
  3. Загрузить оставшуюся часть модели батареи (см. руководство User Guide 6365 MAX17055 Software Implementation Guide и User Guide 6595 MAX1726x Software Implementation Guide).

Заключение

LiFeP04-аккумуляторы идеально подходят для приложений, работающих с высокими нагрузочными токами. Вместе с тем при использовании LiFeP04 достаточно сложно добиться точного измерения уровня заряда (SOC). В данной статье был рассмотрен алгоритм измерения SOC, основанный на оценке напряжения (OCV) с помощью метода интегрирования токов. Этот алгоритм решает проблемы с точностью измерений, возникающие при работе с LiFeP04-аккумуляторами.

 

Производитель: EEMB Co.Ltd
Наименование
Производитель
Описание Корпус/
Изображение
Цена, руб. Наличие
LP385590F
LP385590F
EEMB Co.Ltd
Арт.: 673802 ИНФО PDF
Доступно: 191 шт. 347,00
Аккумуляторная батарея электрическая литий феррум фосфатный (Li-FePO4l) прямоугольного типа. Oтсутствует эффект памяти. Номинальное напряжение 3,2 В. Номинальная емкость 1250 мАч. Число циклов разряд-заряд 2000.
LP385590F 347,00 от 10 шт. 297,00 от 30 шт. 267,00 от 50 шт. 248,00 от 140 шт. 235,00
189 шт.
(на складе)
2 шт.
(под заказ)
LP8867220F
LP8867220F
EEMB Co.Ltd
Арт.: 673813 ИНФО PDF
Доступно: 21 шт. 2660,00
Аккмумулятор литий железофосфатный 10000mAh
LP8867220F 2660,00 от 2 шт. 2280,00 от 4 шт. 2050,00 от 7 шт. 1900,00 от 20 шт. 1810,00
21 шт.
(на складе)

Сравнение позиций

  • ()