Что нужно знать для выбора правильного геркона

| LITTELFUSE

Геркон – сверхточный быстродействующий герметичный переключатель, управляемый магнитным полем. Количество его срабатываний – до пяти миллиардов раз. На его основе выпускаются датчики магнитного поля и герконовые реле для самых различных применений – от бытовой техники до авиации и космонавтики. В статье описаны особенности выбора герконов и дан табличный обзор широкой линейки этих изделий производства Littelfuse.

Слово «геркон» является сокращением слов «герметичный контакт». Первый геркон был разработан в 1936 году американской компанией Bell Telephone Laboratories. Впоследствии они стали широко применяться в качестве датчиков, и на их основе были созданы герконовые реле.

Геркон

Рис. 1. Геркон

Геркон (рис. 1) состоит из двух ферромагнитных проводников, имеющих плоские контакты, герметизированные в стеклянной капсуле. Без внешнего магнитного поля контакты разомкнуты, и между ними есть небольшой диэлектрический зазор. В магнитном поле контакты замыкаются. Контактная область обеих пластин имеет напыленное или гальваническое покрытие, выполненное из очень стойкого к эрозии металла (обычно – родий, иридий или рутений). Структура слоев покрытия контактов приведена на рис. 2а и 2б для родия и иридия, соответственно.

Иридий, рутений и родий – очень стойкие к эрозии металлы платиновой группы. Благодаря напылению из этих металлов количество срабатываний контактов достигает пяти миллиардов раз. В полость капсулы обычно закачивают азот. Некоторые типы герконов вакуумируются для увеличения максимально допустимого коммутируемого напряжения. Контакты геркона в магнитном поле намагничиваются, и между ними возникает магнитодвижущая сила, равная напряженности магнитного поля. Если напряженность магнитного поля достаточно велика, чтобы преодолеть упругие силы в контактах, возникающие при их упругой деформации, то контакты замыкаются. Когда поле ослабевает, контакты снова размыкаются.

Структура контактных групп NiFe-W-Ru (а) и NiFe-Au-Ro-Ir (б)

Рис. 2. Структура контактных групп NiFe-W-Ru (а) и NiFe-Au-Ro-Ir (б)

Существует два типа герконов: SPST-NO (Single Pole, Single Throw Normally Open, то есть «один полюс, один канал») – обычный выключатель, в котором два контакта нормально разомкнуты; SPDT-CO (Single Pole, Double Through Change Over, то есть «один полюс, два канала – переключение») – переключатель, в котором один контакт всегда нормально замкнут, а второй нормально разомкнут.

Геркон, описанный выше и представленный на рис. 3, относится к SPST-типу. На рис. 4 представлен геркон SPDT-типа.

Устройство геркона SPST-типа Устройство трехвыводного геркона типа SPDT (однополярное двунаправленное)

Рис. 3. Устройство геркона SPST-типа
Рис. 4. Устройство трехвыводного геркона типа SPDT (однополярное двунаправленное)

Общая пластина является единственной подвижной частью такого геркона, в отсутствие магнитного поля она замкнута с нормально замкнутым контактом реле. При возникновении магнитного поля соответствующей силы общая пластина замыкается с нормально разомкнутым контактом. Обе пластины нормально разомкнутого и нормально замкнутого контактов являются неподвижными. Разомкнутые контакты имеют ферромагнитное покрытие, а нормально замкнутый контакт выполнен из немагнитного материала. При помещении в магнитное поле подвижный и нормально-разомкнутый контакт намагничиваются в одинаковом направлении, и при достаточной напряжённости магнитного поля происходит замыкание подвижного контакта с неподвижным ферромагнитным контактом. При исчезновении внешнего магнитного поля намагниченность контактов ослабевает, и они размыкаются. Для того, чтобы остаточная намагниченность была минимальной, при изготовлении герконов применяют высокотемпературную обработку контактов. В качестве источника магнитного поля для геркона чаще всего используют постоянный магнит (рис. 5) или соленоид.

Принцип работы магнитоуправляемого контакта – геркона

Рис. 5. Принцип работы магнитоуправляемого контакта – геркона

Рассмотрим несколько наиболее распространённых систем геркон-магнит.

  1. Приближение и удаление магнита перпендикулярно (рис. 6) или под углом (рис. 7) к главной геометрической оси геркона:
Перпендикулярное приближение и удаление магнита  Приближение и удаление магнита под углом
Рис. 6. Перпендикулярное приближение и удаление магнита Рис. 7. Приближение и удаление магнита под углом

В данном случае геркон будет замыкаться при приближении и размыкаться при отдалении магнита. Рассмотрим более подробно, обратившись к рис. 8.

Зоны активации геркона при поперечном удалении магнита

Рис. 8. Зоны активации геркона при поперечном удалении магнита

Концентрация силовых линий магнита уменьшается при удалении магнита от геркона. Наиболее сконцентрированы магнитные линии на полюсах магнита. Наиболее обширная зона взаимодействия магнита с герконом находится в центре геркона. При нахождении постоянного магнита в пределах этой зоны магнитное поле является достаточным для надежного срабатывания контактной группы. Пунктиром показана зона гистерезиса – при вхождении магнита в эту зону магнитное поле еще не обладает достаточной напряженностью для срабатывания контактной группы, но ее достаточно для удержания контактной группы в сработавшем состоянии. В случае иной конфигурации контактной группы геркона, отличной от рассматриваемой SPST, под срабатыванием будет пониматься размыкание нормально-замкнутого контакта и замыкание подвижного контакта с нормально-разомкнутым контактом SPDT геркона. Замыкание контактов геркона может активироваться с помощью параллельного движения кольцевого магнита вдоль оси геркона, как показано на рис. 9.

Движение кольцевого магнита относительно геркона

Рис. 9. Движение кольцевого магнита относительно геркона

Конфигурация зон взаимодействия будет схожа с предыдущей системой, так как ось геркона и направление магнитных линий магнита будут совпадать с описанной выше ситуацией, как видно на рис. 10.

Зоны взаимодействия при движении магнита вдоль оси геркона

Рис.10. Зоны взаимодействия при движении магнита вдоль оси геркона

  1. Геркон может активироваться при помощи плоского магнита или кольцевого магнита с двумя или 2N полюсами (рис. 11).

Активация геркона плоским или кольцевым магнитом

Рис. 11. Активация геркона плоским или кольцевым магнитом

Для понимания зон взаимодействия геркона обратимся к рис. 12 и 13.

Рис. 12. Полюса магнита перпендикулярны главной геометрической оси геркона. Магнит движется вдоль нее Рис. 13. Полюса магнита перпендикулярны главной геометрической оси геркона. Магнит движется перпендикулярно ей
Рис. 12. Полюса магнита перпендикулярны главной геометрической оси геркона. Магнит движется вдоль нее Рис. 13. Полюса магнита перпендикулярны главной геометрической оси геркона. Магнит движется перпендикулярно ей

Как видно, зоны взаимодействия находятся на концах геркона. В центральной части геркона находится «мертвая зона», в которой геркон остается открытым. Таким образом, двигающийся перпендикулярно геркону магнит, чьи полюса расположены подобным образом, активировать геркон не будет (рис. 14).

«Мертвая зона» взаимодействия магнита с герконом

Рис. 14. «Мертвая зона» взаимодействия магнита с герконом

  1. Геркон можно экранировать с помощью магнитного материала (например, стального листа). На рис. 15 изображены неподвижный геркон и неподвижный магнит между которыми движется экранирующий предмет.

Экранирование геркона магнитным материалом

Рис. 15. Экранирование геркона магнитным материалом

Основные типы герконов, выпускаемые компанией Littelfuse, приведены в таблице 1.

Таблица 1. Серии герконов Littelfuse

Серия Длина корпуса, мм Нагрузочная способность
(Стандартная: ≤10 Вт, ≤0,5 A, ≤200 В)
Тип контактов Key Features
MITI-3V1 7 Стандартная SPST Супер-компактный (7 мм стеклянный корпус)
MDSR-10 10 Стандартная SPST Очень компактный (10 мм стеклянный корпус)
MDSR-7 13 Стандартная SPST Компактный (12.7 мм стеклянный корпус)
FLEX-14 14 Стандартная SPST Дешевый, более гибкие выводы
MACD-14 14 Стандартная SPST Малый гистерезис
MDCG-4 15 Стандартная SPST Низкая цена
HA15-2 15 ~240 В (20 Вт) SPST ~ 240 В макс. рабочее напряжение
MLRR-4 15 20 Вт SPST Малый гистерезис
MLRR-3 15 20 Вт SPST Длинные выводы, повышенный ресурс
MARR-5 19 1000 В SPST Высоковольтный
MRPR-20 20 ~240 В, 50 Вт SPST Напряжение переключения ~240 В, высокая мощность
DRR-129 50 100 Вт, 3 A, 400 В SPST Большой, высокая мощность
MDRR-DT 15 Стандартная SPDT Малый корпус
DRR-DTH 40 30 Вт, 0.5 A, 500 В SPDT Высокая мощность
DRT-DTH 40 50 Вт, 1.5 A, 500 В SPDT Большой, высокая мощность

Основные параметры герконов

Время срабатывания время между моментом приложения магнитного поля и моментом замыкания контактов геркона.

На рис. 16 представлен график зависимости величины магнитного поля от времени. Вначале геркон помещают в сильное магнитное поле до момента насыщения (при этом даже при увеличении магнитной индукции намагниченность, достигнув максимума, остается неизменной). После этого магнитное поле ослабляют до 0 и начинают постепенно увеличивать. Рабочая точка на данном графике означает такую величину магнитного поля, при которой контакты геркона замыкаются. Точка рассоединения – соответствует величине магнитного поля, при которой контакты размыкаются. Нужно заметить, что сила поля в точке рассоединения всегда ниже, чем в рабочей точке. Это связано с тем, что у контактов геркона всегда остается небольшая намагниченность.

Зависимость величины магнитного поля геркона от времени

Рис. 16. Зависимость величины магнитного поля геркона от времени

Временем отпускания называется интервал между рабочей точкой и точкой рассоединения.

Магнитодвижущая сила (МДС) срабатывания (pullin) – это величина силовой характеристики магнитного поля, при которой происходит замыкание контактов геркона. В системе СИ единицами измерения магнитодвижущей силы являются Ампер*витки (AT или Amper*turns). Когда измеряют магнитодвижущую силу с помощью соленоида, рабочая точка (замыкание) обычно дается при температуре 20°С, так как из-за термического расширения медного провода в катушке магнитное поле будет меняться приблизительно на 0,4%/°С.

Отношение между размыканием и замыканием, выраженное, как правило, в процентах, называется гистерезисом. В зависимости от материалов металлических контактов, их жесткости, длины, площади соприкосновения, гистерезис будет сильно меняться (рис. 17).

Отношение между МДС в точках замыкания и размыкания

Рис. 17. Отношение между МДС в точках замыкания и размыкания

Гистерезис – это отношение магнитодвижущей силы срабатывания к магнитодвижущей силе в точке рассоединения. Обычно этот параметр выражают в процентах. Компания Littelfuse выпускает специальные серии герконов (MACD-14, MASM-14), в которых гистерезис сведен к минимуму. Обычно такие герконы применяются в датчиках уровня жидкостей, в системах позиционирования.

Контактное сопротивление (contact resistance) – максимальное сопротивление геркона в замкнутом состоянии.

Удельное сопротивление контактов геркона или герконового реле очень мало и обычно составляет от 7,8х10-8 до 10х10-8 Ом/м. Это выше удельного сопротивления меди, которое равняется 1,7х10-8 Ом/м. Контактное сопротивление герконов обычно составляет около от 70 до 200 мОм, а сопротивление контактов в герконовом реле – около 150 мОм.

Динамическое сопротивление контактов (Dynamic Contact Resistance (DCR) – это сопротивление контактов геркона в рабочем/динамическом режиме. Статичное контактное сопротивление геркона – достаточно малоинформативный параметр, который не позволяет выявить проблемы, связанные с реальным состоянием контактов. Замыкание и размыкание контактов геркона с частотой от 50 до 200 Гц дает намного больше информации. Подача на геркон напряжения 0,5 В и тока 50 мА может помочь выявить потенциальные проблемы. Эти измерения могут быть выполнены с помощью осциллографа и легко оцифрованы при автоматическом контроле качества (рис. 18). Не стоит использовать более высокое напряжение, чтобы не изнашивать контакты геркона. Если на производстве контакты геркона не были правильно очищены перед корпусированием, то на них может находиться тончайшая диэлектрическая пленка толщиной в несколько ангстрем. Из-за нее может быть нарушена коммутация слабых сигналов. При использовании более высокого напряжения эта проблема может никак не проявиться.

 Измерение динамического сопротивления контактов геркона

Рис. 18. Измерение динамического сопротивления контактов геркона

Если на катушку подать сигнал с частотой 50…200 Гц, ток коммутации будет порядка 0,5 мА. Дребезг контактов после замыкания может продолжаться около 100 мс, и за ним последует динамический шум, который будет длиться около 0,5 мс. Природа этого динамического шума состоит в том, что после замыкания контактов происходят гармонические колебания, и в месте контакта изменяется сопротивление из-за меняющегося в зоне контакта давления. При этом размыкания не происходит. На рис. 19 видно, что после завершения фазы динамического шума начинается «волновая» фаза, длящаяся 1 мс или чуть более. Вибрация контактов геркона в магнитном поле соленоида через 2…2,5 мс прекращается, и сопротивление стабилизируется.

Измерение динамического сопротивления контактов геркона

Рис. 19. Динамический шум коммутации геркона

Наблюдая за осциллограммой этого динамического теста, мы можем сделать некоторые выводы о качестве тестируемого геркона. Как только на соленоид подается напряжение, колебательный процесс должен завершиться за время, приблизительно равное 1,5 мс. Если колебания продолжаются более 2,5 мс, это может означать, что контакты плохо намагничиваются. В результате ресурс данного геркона будет небольшим, особенно если он будет работать с большой нагрузкой (рис. 20).

Затягивание колебательного процесса из-за плохой намагниченности контактов

Рис. 20. Затягивание колебательного процесса из-за плохой намагниченности контактов

Если динамический шум или дребезг контактов длятся значительно дольше 3 мс, это может быть следствием нарушения герметичности геркона, трещины в корпусе, перегрузки по току или напряжению. Также это может быть следствием загрязнения контактов при производстве или попадания влажного воздуха внутрь корпуса геркона. На рис. 21 и 22 изображены такие случаи.

Чрезмерный динамический шум контактов геркона Чрезмерный дребезг контактов геркона
Рис. 21. Чрезмерный динамический шум контактов геркона Рис. 22. Чрезмерный дребезг контактов геркона

На рис. 23 изображен случай, когда после завершения фазы динамического шума продолжаются стохастические колебания контактов, вследствие которого динамическое сопротивление контактов не стабилизируется.

Стохастические колебания контактов геркона

Рис. 23. Стохастические колебания контактов геркона

Напряжение переключения/коммутации (switching voltage) – это обычно максимальное постоянное напряжение, которое может быть приложено к геркону в момент замыкания контактов. Если напряжение на герконе выше 5…6 В, при этом может произойти перенос микроскопического количества металла с одного контакта на другой. Несмотря на это, при работе с напряжениями до 12 В герконы и герконовые реле имеют наработку на отказ в десятки миллионов раз срабатываний. А при напряжении 5 В и меньше количество срабатываний увеличивается до миллиардов раз. Высококачественные герконовые реле Littelfuse могут работать в слабосигнальных цепях с напряжениями всего в несколько нановольт.

Ток переключения или коммутационный ток (switching current) – это максимальный постоянный ток или амплитудное значение переменного тока в момент замыкания контактов геркона. В случае превышения этого значения срок службы геркона значительно сократится.

Несущий ток (carry current) – это максимальное значение тока при замкнутых контактах геркона. Микросекундные импульсы тока могут значительно превосходить это значение без сокращения срока службы геркона. В то же время длительные импульсы тока или постоянный ток, превышающий несущий, приведут к сокращению срока службы геркона или выходу его из строя. Герконы и герконовые реле в отличие от своих электромеханических собратьев могут работать с очень малыми токами, на уровне нескольких фемтоампер (фемто = 10-15).

Паразитная емкость (stray capacitance) – емкость, которая возникает между разомкнутыми контактами геркона. Обычно она составляет единицы пикофарад. Данный параметр очень важен с точки зрения образования дуги, так ток дуги будет напрямую зависеть от емкости заряда.

Эквивалентная емкость (contact capacitance) – емкость геркона в замкнутом состоянии. Для герконов SPST-типа эта величина обычно составляет 0,1…0,2 пФ. Для переключающих герконов SPDT-типа эквивалентная емкость обычно составляет 1…2 пФ.

Этот параметр имеет большое значение при применении геркона в высокочастотных цепях.

Напряжение пробоя (breakdown voltage) – это максимальное напряжение, приложенное к геркону в открытом состоянии. Оно всегда больше, чем напряжение переключения. Для большинства герконов с инертными газами внутри это значение составляет от 175 до 1000 В. При каждом замыкании контактов геркона паразитная емкость будет мгновенно разряжаться. Чем ближе напряжение в цепи к рабочему напряжению геркона, тем ниже будет его ресурс работы в этой цепи. Поэтому желательно всегда выбирать изделие с запасом по данному параметру.

Коммутируемая мощность (switching power) – это максимальная мощность, которая может потребляться нагрузкой, подключенной через геркон. Так как мощность рассчитывается как произведение коммутируемого напряжения и тока переключения, то для 10 Вт геркона не стоит пропускать ток более 500 мА при напряжении 200 В, для такого тока максимальное коммутационное напряжение составит всего 20 В. Превышение данного параметра также неминуемо влечет за собой сокращение срока службы геркона.

Сопротивление изоляции (insulation resistance)сопротивление геркона в открытом состоянии. По этому параметру герконы превосходят большинство существующих на сегодняшний день ключей, так как их сопротивление изоляции измеряется в тераомах. Величина токов утечки геркона в открытом состоянии составляет единицы пикоампер.

Диэлектрическая абсорбция (dielectric absorbtion) – это эффект, связанный с поляризацией диэлектриков в герконе при разряде емкостного заряда контактов. Данный эффект проявляется в виде задержки или уменьшения протекания через замкнутый геркон очень малых токов на уровне наноампер.

Резонансная частота (resonance frequency) – это частота собственных колебаний геркона, при которой начинаются собственные вибрации контактов, которые, в свою очередь, влияют на такие параметры геркона как напряжение пробоя и напряжение коммутации. Герконы с капсулами 20 мм обычно имеют резонансную частоту в диапазоне 1500…2000 Гц. Более компактные 10 мм герконы имеют более высокую резонансную частоту: 7000…8000 Гц. Для того, чтобы избежать проблем в работе геркона, нужно учесть вибрации среды эксплуатации и резонансную частоту геркона.

Защита герконов и герконовых реле

В цепях, где геркон работает с индуктивной нагрузкой, такой как катушка реле, соленоид, трансформатор или миниатюрный мотор, энергия магнитного поля, накопленная в индуктивных компонентах, при коммутации будет испытывать высокие нагрузки по напряжению и току. Это обстоятельство будет негативно сказываться на сроке службы геркона.

Существует несколько способов устранить эту проблему.

  1. Использование шунтирующего диода (в зарубежной литературе он часто встречается под названием flyback или freewheeling diode) возможно в цепях постоянного тока (рис. 24). Для переменного напряжения придется использовать защитный диод Зенера (он же лавинный диод или TVS-диод), варистор или RC-цепочку (снабберную RC-цепь). Каждый из способов имеет как достоинства, так и недостатки.

 Защита геркона шунтирующим диодом

Рис. 24. Защита геркона шунтирующим диодом

  1. Использование варисторов или двунаправленных TVS-диодов (рис. 25). Данные компоненты проводят ток при превышении некоторого порогового значения напряжения. Эти компоненты ставят в параллель с герконом. Рабочие напряжения для TVS-диодов составляют от 2,5 до 600 В, а для варисторов – от 9 до 3500 В. Варисторы обладают значительно большими импульсными мощностями, чем TVS-диоды, но их емкость также значительно выше, и это негативно влияет на контакты геркона при замыкании, поскольку при этом через них протекает больший ток за счет разрядки этой паразитной емкости. Для защиты геркона в цепи переменного напряжения можно использовать только двунаправленный TVS-диод, чтобы он не шунтировал разомкнутый геркон при прямом смещении по напряжению.

Защита геркона варистором

Рис. 25. Защита геркона варистором

  1. Использование подавляющих RC-цепей (снабберных цепей).

Существует два варианта подключения снабберной цепи: параллельно геркону (рис. 26) или параллельно нагрузке (рис. 27). Первый способ является предпочтительным. Он позволяет снизить напряжение при коммутации и таким образом избежать образования искр. Но в этом случае при коммутации через геркон будет протекать больший ток, обусловленный разрядом конденсатора.

Защита геркона снабберной цепью, подключенной параллельно геркону Защита геркона снабберной цепью, подключенной параллельно нагрузке
Рис. 26. Защита геркона снабберной цепью, подключенной параллельно геркону Рис. 27. Защита геркона снабберной цепью, подключенной параллельно нагрузке

Таким образом, мы столкнемся с решением задачи по выбору подходящего по сопротивлению резистора и конденсатора по емкости. Малая емкость будет плохо сглаживать скачки напряжения при переходных процессах , особенно при большой реактивной составляющей нагрузки. А большая повысит стоимость снабберной цепи и при этом увеличит коммутационный ток, что также негативно скажется на долговечности геркона. Для ограничения тока во время замыкания контактов геркона используется резистор. Посчитаем сопротивление:

По закону Ома: 

Закон Ома

Напряжение на герконе должно лежать в пределах 0,5 от максимального пикового значения Vpk напряжения (1)

(1)

и троекратного его превышения 3*Vpk. Производим расчет по формуле (2):

(2)

где Isw – ток коммутации геркона.

Уменьшение сопротивления резистора в снабберной цепи уменьшит износ контактов геркона от электрических дуг, при этом высокое сопротивление будет положительно влиять на ограничение тока «конденсатор-геркон». Для подбора подходящей емкости рекомендуется начать с 0,1 мкФ. Это очень распространенная емкость и ее цена очень мала. Если этой емкостью не удается избавиться от искр при замыкании контактов геркона, то попробуйте ее постепенно увеличивать до исчезновения искр при коммутации. Параллельно с этим не забывайте про ток коммутации.

Формовка и обрезка выводов герконов

Длина и форма аксиальных выводов герконов не всегда удобны для применения в конкретном приборе. Однако необдуманная модификация может значительно сказаться на работе геркона. При резке и формировании выводов герконов важно использовать правильные опорные и режущие инструменты, чтобы избежать повреждения герметичных уплотнений «стекло-металл». Поврежденный корпус может иметь как незаметные глазу сколы, так и крупные трещины. Такие дефекты могут быть обнаружены визуально с использованием микроскопа с небольшим увеличением. Но бывают случаи, когда нарушается герметизация корпуса, и даже описанная выше методика измерения динамического сопротивления может не выявить заметного ухудшения. С течением времени в геркон будет попадать влага, и его функционирование будет нарушаться.

Для того, чтобы избежать повреждений, рекомендуется оставлять 1 мм длины вывода между точкой формовки либо обрезки – и корпусом геркона. При этом вывод геркона должен быть полностью зафиксирован, чтобы механическое напряжение при формовке или обрезке не передавалось на остальную часть вывода.

Рассмотрим основные способы формовки и обрезки выводов геркона.

  1. Обрезка выводов геркона с помощью бокорезов с двусторонней заточкой (рис. 28) недопустима, так как при этом сила, деформирующая вывод, будет передаваться в сторону корпуса.

Недопустимость обрезки выводов геркона бокорезами с двусторонней заточкой

Рис. 28. Недопустимость обрезки выводов геркона бокорезами с двусторонней заточкой

Обрезка выводов бокорезами с односторонней заточкой допустима (рисунок 29), при этом надо помнить, что плоская сторона губок бокорезов должна находится со стороны корпуса геркона. Также следует обратить внимание на качество заточки и наличия люфта у используемого инструмента.

Обрезка выводов геркона бокорезами с односторонней заточкой

Рис. 29. Обрезка выводов геркона бокорезами с односторонней заточкой

  1. Обрезка выводов с помощью зажима, жестко фиксирующего контакты геркона (рисунки 30 и 31).
 Обрезка выводов геркона с помощью зажима (вариант 1)  Обрезка выводов геркона с помощью зажима (вариант 2)
Рис. 30. Обрезка выводов геркона с помощью зажима (вариант 1) Рис. 31. Обрезка выводов геркона с помощью зажима (вариант 2)

 

Обрезка выводов геркона с частичной фиксацией (рисунок 32) недопустима.

Недопустимость обрезки выводов геркона с частичной фиксацией

Рис. 32. Недопустимость обрезки выводов геркона с частичной фиксацией

  1. Формовка выводов геркона без фиксации вывода запрещена (рис. 33), так как в таком случае деформации подвергается и часть вывода, уходящая в корпус геркона.

Недопустимость формовки выводов геркона без фиксации

Рис. 33. Недопустимость формовки выводов геркона без фиксации

Формовка выводов геркона при фиксации вывода в двух точках, как показано на рис. 34, допустима, так как опора В не дает деформироваться выводу в направлении от нее к корпусу геркона.

Рис. 34. Формовка выводов геркона при фиксации вывода в двух точках

Рис. 34. Формовка выводов геркона при фиксации вывода в двух точках

Формовка при полной фиксации вывода геркона, как показано на рис. 35 и 36, также допустима.

Формовка вывода геркона при полной фиксации (вариант 1)  Формовка вывода геркона при полной фиксации (вариант 2)
Рис. 35. Формовка вывода геркона при полной фиксации (вариант 1) Рис. 36. Формовка вывода геркона при полной фиксации (вариант 2)

После правильной формовки и обрезки выводов геркона можно получить распространенные конфигурации, изображенные на рис. 37.

Распространенные конфигурации герконов

Рис. 37. Распространенные конфигурации герконов

Выбор магнитов

Для общего применения в основном используются четыре группы магнитов: ферросплавы, альнико AlNiCo, неодимовые NdFeB и самариевые SmCo (таблица 2). Для того чтобы подобрать подходящий магнит, следует учитывать такие факторы как температура среды, размагничивание близкорасположенными источниками магнитных полей, свободное пространство для движения, химический состав окружающей среды.

Неодимовые магниты обладают наибольшей энергией, наибольшей остаточной намагниченностью и коэрцитивной силой. Они имеют сравнительно невысокую цену и более высокую механическую прочность, чем самариевые SmCo. Могут использоваться при температурах среды до 200°C. Не рекомендуется использовать эти магниты в средах с повышенным содержанием кислорода.

Самариевые SmCo имеют высокую энергию и подходят для применений, где требуется высокая стойкость к размагничиванию. Имеют великолепную термическую стабильность и могут использоваться в средах до 300°C, обладают высокой коррозийной стойкостью. При этом их цена – самая высокая среди всех типов магнитов. Их недостатком является очень высокая хрупкость.

Альнико AlNiCo намного дешевле, чем магниты из редкоземельных элементов и подходят для большинства применений. Имея низкую коэрцитивную силу, отличаются великолепной термической стабильностью вплоть до 550°C.

Ферритовые магниты являются самыми дешевыми, но при этом хрупкими. Имеют неплохую термическую стабильность и могут использоваться при температурах до 300 °C. Очень стойки к коррозии. Требуют механической обработки для соответствия жестким габаритным допускам.

Таблица 2. Выбор магнитов для управления герконами

Показатели Увеличение показателей →
Цена Феррит AlNiCo NdFeB SmCo
Энергия Феррит AlNiCo SmCo NdFeB
Диапазон рабочих температур NdFeB Феррит SmCo AlNiCo
Коррозионная стойкость NdFeB SmCo AlNiCo Феррит
Коэрцитивная сила AlNiCo Феррит NdFeB SmCo
Механическая прочность Феррит SmCo NdFeB AlNiCo
Температурный коэффициент AlNiCo SmCo NdFeB Феррит

Заключение

В современном мире с каждым днем становится все больше «умных вещей», которые значительно упрощают наши повседневные задачи. Немалую роль в этом сыграли датчики на основе герконов. Фантастическая надежность, четкость срабатывания, отсутствие потребности в питании, простота применения и великолепные коммутационные свойства для слабосигнальных цепей сделали герконы одними их самых распространенных электронных компонентов, применяющихся всюду, от холодильников до самолетов.

Производитель: Te Connectivity
Наименование
Производитель
Описание Корпус/
Изображение
Цена, руб. Наличие
VERSAFLEX-1/4-0-SP
Te Connectivity
Арт.: 994953
Доступно: 10468 шт.
Выбрать
условия
поставки
VERSAFLEX-1/4-0-SP
10468 шт.
(под заказ)
Выбрать
условия
поставки
Производитель: LITTELFUSE
Наименование
Производитель
Описание Корпус/
Изображение
Цена, руб. Наличие
DRR-DTH-75-80
LITTELFUSE
Арт.: 1391622 ИНФО
Доступно: 1671 шт.
Выбрать
условия
поставки
DRR-DTH-75-80 - SWITCH REED SPDT 350MA 350V
DRR-DTH-75-80
1671 шт.
(под заказ)
Выбрать
условия
поставки
FLEX-14-10-15
FLEX-14-10-15
LITTELFUSE
Арт.: 1391806 ИНФО
Доступно: 17547 шт.
Выбрать
условия
поставки
FLEX-14-10-15 - SWITCH REED SPST-NO 350MA 140V
FLEX-14-10-15
17547 шт.
(под заказ)
Выбрать
условия
поставки
MDCG-4-12-38
LITTELFUSE
Арт.: 1394835 ИНФО
Поиск
предложений
MDCG-4-12-38 - SWITCH REED SPST-NO 350MA 140V
MDCG-4-12-38
-
Поиск
предложений
MDRR-DT-10-15-F
LITTELFUSE
Арт.: 1394845 ИНФО
Доступно: 6987 шт.
Выбрать
условия
поставки
MDRR-DT-10-15-F - SWITCH REED SPDT 180MA 120V
MDRR-DT-10-15-F
6987 шт.
(под заказ)
Выбрать
условия
поставки
MDRR-DT-15-20-F
LITTELFUSE
Арт.: 1394847 ИНФО
Доступно: 12756 шт.
Выбрать
условия
поставки
MDRR-DT-15-20-F - SWITCH REED SPDT 180MA 120V
MDRR-DT-15-20-F
12756 шт.
(под заказ)
Выбрать
условия
поставки
MDRR-DT-15-25-F
LITTELFUSE
Арт.: 1394850 ИНФО
Доступно: 13998 шт.
Выбрать
условия
поставки
MDRR-DT-15-25-F - SWITCH REED SPDT 180MA 120V
MDRR-DT-15-25-F
13998 шт.
(под заказ)
Выбрать
условия
поставки
MDSR-10-15-20
LITTELFUSE
Арт.: 1394914 ИНФО
Доступно: 8356 шт.
Выбрать
условия
поставки
MDSR-10-15-20 - SWITCH REED SPST-NO 350MA 140V
MDSR-10-15-20
8356 шт.
(под заказ)
Выбрать
условия
поставки
MDSR-10-20-25
LITTELFUSE
Арт.: 1394915 ИНФО
Доступно: 1742 шт.
Выбрать
условия
поставки
SWITCH REED SPST-NO 350MA 140V
MDSR-10-20-25
1742 шт.
(под заказ)
Выбрать
условия
поставки
MDSR-7-10-15
LITTELFUSE
Арт.: 1394932 ИНФО
Доступно: 4846 шт.
Выбрать
условия
поставки
MDSR-7-10-15 - SWITCH REED SPST-NO 350MA 140V.
MDSR-7-10-15
4846 шт.
(под заказ)
Выбрать
условия
поставки
MDSR-7-10-20
MDSR-7-10-20
LITTELFUSE
Арт.: 1394933 ИНФО
Доступно: 87742 шт.
Выбрать
условия
поставки
MDSR-7-10-20 - SWITCH REED SPST 5A 10-20 A/T
MDSR-7-10-20
87742 шт.
(под заказ)
Выбрать
условия
поставки
MDSR-7-10-25
LITTELFUSE
Арт.: 1394934 ИНФО
Доступно: 1645 шт.
Выбрать
условия
поставки
MDSR-7-10-25 - SWITCH REED SPST-NO 350MA 140V
MDSR-7-10-25
1645 шт.
(под заказ)
Выбрать
условия
поставки
MLRR-3-32-38
LITTELFUSE
Арт.: 1394988 ИНФО
Доступно: 11000 шт.
Выбрать
условия
поставки
MLRR-3-32-38 - SWITCH REED SPST-NO 700MA 140V
MLRR-3-32-38
11000 шт.
(под заказ)
Выбрать
условия
поставки