forward

Функциональный генератор / Arbitrary Waveform Generator (AWG)

Описание:

Благодаря использованию высоковольтного операционного усилителя THS3091 с низким коэффициентом искажений и токовой обратной связью в данном базовом проекте демонстрируется способ и достоинства конфигурирования нескольких операционных усилителей в схему с разделением нагрузки при управлении высоковольтными сигналами для большой нагрузки. Благодаря наличию подробной инструкции по применению данный проект можно легко настроить под конкретное применение.

Данный базовый проект имеет характер аппаратного решения.

Возможности:

  • Напряжение питания 15 В
  • Межпиковая амплитуда выходного напряжения до 24 В
  • Коэффициент третьей гармоники 32 дБн при передаче синусоидального сигнала с межпиковой амплитудой 20 В и частотой 70 МГц на нагрузку с сопротивлением 100 Ом (кабель с двумя терминаторами с сопротивлением 50 Ом каждый)
  • Коэффициент второй гармоники 38 дБн при передаче синусоидального сигнала с межпиковой амплитудой 20 В и частотой 70 МГц на нагрузку с сопротивлением 100 Ом (кабель с двумя терминаторами с сопротивлением 50 Ом каждый)
  • Высокий выходной ток (до 400 мА при использовании двух операционных усилителей THS3091)
  • Данный базовый проект был протестирован в лабораторных условиях, и к нему прилагаются файлы проекта и руководство по проекту

Документация:
  • Схемотехника
  • BOM
  • Тестирование
Описание:

Базовый проект представляет собой решение малопотребляющего полностью дифференциального усилителя с программируемым коэффициентом усиления с использованием малопотребляющего двухканального усилителя с токовой обратной связью OPA2683 от TI. В руководстве по данному проекту описываются некоторые сложности, связанные с реализацией подобной схемы. Также в руководстве к данному проекту приводятся практические результаты и рекомендации по использованию / проектированию малопотребляющего полностью дифференциального усилителя с программируемым коэффициентом усиления.

Данный базовый проект имеет характер аппаратного решения.

Возможности:

  • Малопотребляющий полностью дифференциальный усилитель
  • Малопотребляющий усилитель с программируемым коэффициентом усиления
  • Большая полоса пропускания относительно высокого коэффициента усиления
  • Напряжение питания +/-5 В
  • Коэффициенты усиления: 2, 21, 50 и 70 В/В
  • Данный базовый проект был протестирован в лабораторных условиях, и к нему прилагаются файлы проекта и руководство по нему

Документация:
  • Схемотехника
  • BOM
  • Тестирование
Описание:

Благодаря использованию операционных усилителей LMH6629 и OPA684 в данном базовом проекте решаются проблемы со сложностями и ограничениями разработки схем многоступенчатых усилителей с высокими коэффициентами усилениями. Благодаря наличию полноценного описания, которое включает в себя теоретический материал, симуляции, дизайн печатной платы и средства отладки, данный проект может быть с лёгкостью настроен для конкретного применения.

Данный базовый проект имеет характер аппаратно-программного решения.

Возможности:

  • Высокий коэффициент усиления по напряжению – до 120000 В/В
  • Широкая полоса пропускания – плоская полка в диапазоне частот 100 кГц – 4 МГц при коэффициенте усиления 120000 В/В
  • Работа от низкого напряжения питания (+/-2,5 В)
  • Малое количество используемых компонентов
  • Данный базовый проект был протестирован в лабораторных условиях и включает в себя файлы проекта и описание

Документация:
  • Даташит
  • Схемотехника
  • BOM
  • Тестирование
Описание:

TSW308x представляет собой пример проекта решения двухканального широкополосного приёмника-преобразователя «цифровой код – РЧ», который способен генерировать сигналы со смежным РЧ-спектром с полосой частот до 600 МГц. В данном системе представлен базовый пример того, как можно использовать DAC34x8x, интеллектуальный модулятор TRF3705 и LMK0480x для решения данной задачи. Данный базовый отладочный модуль в связке с картой захвата (такой как, например, TSW1400EVM) может быть использован для генерирования случайных сигналов узкополосных и широкополосных РЧ-сигналов. В данном проекте приводятся примеры конфигураций для генерирования тестовых сигналов, удовлетворяющих требованиям стандарта WCDMA.

Данный базовый проект имеет характер аппаратно-программного решения.

Возможности:

  • Полноценное решение широкополосного передатчика с преобразованием «цифровой код – РЧ»
  • Генерирование сигналов со смежным РЧ-спектром с полосой частот до 600 МГц
  • Генерирование РЧ-сигналов с частотами от 3000 МГц до 4 ГГц
  • Интегрированные РЧ-усилитель и аттенюатор
  • Платформа для простой отладки с программным обеспечением TSW1400 и HSDC Pro

Документация:
  • Даташит
  • Схемотехника
  • BOM
  • Топология платы
Описание:

В проекте демонстрируется, как использовать активный интерфейс с выходом по втекающему току DAC5682Z – в число типовых применений такой системы входят аппаратные средства генераторов случайных сигналов. Данный отладочный модуль включает в себя DAC5682Z для осуществления цифро-аналогового преобразования, OPA695 для реализации активного интерфейса с использованием операционного усилителя с широкой полосой пропускания, а также THS3091 и THS3095 для демонстрации операционного усилителя с большим размахом напряжения. Также на печатной плате имеются CDCM7005, кварцевые генераторы, управляемые напряжением (VCXO) и источник опорного напряжения для генерирования тактового сигнала, а также линейные регуляторы для стабилизации напряжения. Связь с данным отладочным модулем осуществляется по интерфейсу USB с помощью программного графического интерфейса пользователя.

Данный базовый проект имеет характер аппаратного решения.

Возможности:

  • Пример высокопроизводительного аппаратного средства генератора случайных сигналов
  • Генерирования широкополосного сигнала с использованием DAC5682z
  • Имеется 1 широкополосный высокопроизводительный выход, способный управлять нагрузками с импедансом 50 Ом с использованием OPA695
  • Имеется высоковольтный выход с использованием THS3095 с максимальным размахом напряжения 30 В
  • Платформа для простой отладки с использованием TSW1400 и программного обеспечения для генератора испытательного сигнала

Документация:
  • Схемотехника
  • BOM
  • Топология платы
Описание:

Схемы аналоговых интерфейсов, представленные в данном базовом проекте, обычно используются для сопряжения цифро-аналоговых преобразователей (ЦАП) на базе источников тока и квадратурных модуляторов. Несмотря на то, что в данном базовом проекте в качестве примера высокоскоростного ЦАП от TI используется DAC348x, данные схемы с небольшими изменениями могут применяться и для других преобразователей на базе источников тока. DAC348x и аналоговый интерфейс TRF3705 по умолчанию устанавливаются на отладочные модули TSW308xEVM. И DAC348x, и TRF3705 спроектированы с одинаковыми постоянными напряжениями смещения и параметрами размаха переменного тока для обеспечения однородного интерфейса. Также описываются прочие топологии схем для соответствия другим постоянным напряжениям смещения и параметрам размаха переменного тока. Выбрав правильные напряжение смещения и параметры размаха переменного тока, разработчики использовать данные схемы в соответствии с требованиями их применений с целью обеспечения оптимальной работы системы.

Данный базовый проект имеет характер аппаратного решения.

Возможности:

  • Проводится анализ интерфейса на TSW308x для демонстрации непосредственного подключения между DAC3484 и TRF3705
  • Демонстрируются и объясняются общие принципы сопряжения между ЦАП на базе источников тока и I/Q-модуляторами
  • Spice-модели TINA для различных сетей интерфейсов с постоянным и переменным током, а также интерфейсов с фильтрами с целью удовлетворения нужд заказчиков

Документация:
  • Схемотехника
  • BOM
  • Топология платы
Описание:

Это решение демонстрирует модификации платы, требуемые для приложений с поддержкой высокой пропускной способности и высокой частоты, использующий текущий источник ЦАП DAC38J84 с модулятором TRF3704. TRF3704 – это модулятор 6 ГГц, поддерживающий широкие диапазоны модуляций. DAC38J84 – это конвертер 2,5 Гвыборок/с, поддерживающий базовый диапазон 600 MГц. Комбинация облегчает работу на частотах и с пропускной способностью, которые ранее были недостижимы для высокопроизводительных систем связи.

Возможности:

  • Поддержка полосы пропускания 600 МГц, соответствующей полосы пропускания радиочастотного диапазона 1,2 ГГц;
  • Работа до 6 ГГц с хорошим коэффициентом усиления и линейностью характеристики;
  • Обеспечивает правильное преобразование сетевого интерфейса ЦАП для модулятора;
  • Обеспечивает резервирование для LPF между ЦАП и модулятором;
  • Вносит изменения для обеспечения плоской частотной характеристики ББ для приложений с высокой пропускной способностью;
  • TSW38J84 - это типовое решение с графическим интерфейсом, которое можно купить; любые изменения могут быть простестированы на этой отладочной плате.

Документация:
  • Схемотехника
  • BOM
  • Топология платы
  • Тестирование
Описание:

Базовый проект TSW38J84 EVM представляет собой платформу для демонстрации решения двухканального передатчика с интегрированным резонатором. В данном базовом проекте используется устройство 2.5 GSPS DAC38J84 с высококлассными модуляторами: TRF3722 (с интегрированными PLL/ VCO) и TRF3705. TRF3722 и TRF3705 можно объединить для создания двухканального решения, в котором TRF3722 будет выступать в роли локального резонатора (LO) для обоих модуляторов. Интерфейс связи между DAC38J84 и модуляторами, а также методы измерения характеристик совместной работы ЦАП и модуляторов могут варьироваться. Приведённые результаты измерений включают в себя измерения полосы пропускания, выходной точки пересечения третьего порядка, искажения гармоник и подавления частот за пределами полосы пропускания.

Возможности:

  • Полноценное решение двухканальной передачи «биты-РЧ» и использованием интерфейса JESD204B
  • Платформа для тестирования 2.5 GSPS DAC38J84 с двумя высококлассными модуляторами
  • Выходная частота TRF3722 и TRF3705 достигает 4 ГГц
  • Решение с поддержкой полосы пропускания до 1 ГГц
  • Решение двухканальной передачи для современных систем связи, военного назначения и контрольно-измерительных приборов

Документация:
  • Схемотехника
  • BOM
  • Топология платы
Описание:

Данная печатная плата позволяет использовать LMH5401 в качестве усилителя с низким коэффициентом усиления или в качестве аттенюатора.

Данный базовый проект имеет характер аппаратного решения.

Возможности:

  • Передача сигнала без фильтрации постоянной составляющей
  • Минимальный коэффициент усиления 0,5 В / В
  • Раздельные шины питания
  • Полоса пропускания 6 ГГц

Документация:
  • Схемотехника
  • BOM
Описание:

Проект представляет собой широкополосный интегрированный генератора беспрерывных РЧ-сигналов с диапазоном частот 9,8 ГГц и низким уровнем фазового шума, в котором используется гибкий метод подавления паразитных составляющих. Уровень выходной мощности может задаваться в диапазоне от -32 дБм до 14,5 дБм с шагом 0,5 дБ. Данный генератор сигналов может быть использован в качестве локального генератора в таких применениях, как аналоговые и векторные генераторы сигналов, а также в качестве генератора тактовых сигналов для РЧ-АЦП. Проектом TIDA-00626 можно управлять с любого ПК посредством интерфейса USB2ANY от TI, а также с помощью LaunchPad микроконтроллера MSP430F5529.

Данный базовый проект имеет характер аппаратного решения.

Возможности:

  • Интегрированный широкополосный синтезатор частот с выходным диапазоном от 0,02 ГГц до 9,8 ГГц
  • Низкий уровень фазового шума; фазовый шум синтезатора на частоте 6 ГГц на уровне -110 дБн/Гц при отстройке частоты 100 кГц и на уровне -132 дБн/Гц при отстройке частоты 1 МГц
  • Малошумящий синтезатор частоты, уровень паразитных составляющих в пределах полосы пропускания -75 дБн
  • Программируемый уровень выходной мощности в диапазоне от 14,5 дБм до -32 дБм с шагом 0,5 дБ
  • Гибкое подавление паразитных составляющих с использованием LMK61E2

Документация:
  • Схемотехника
  • BOM
Описание:

В базовом проекте представлена широкополосная система преобразования несбалансированных сигналов в дифференциальные, предназначенная для систем как без фильтрации постоянной составляющей, так и с ней. Данный проект позволяет отладить работу каскады из LMH5401 и LMH6401, а также в нём объясняется принцип работы данной системы.

Данный базовый проект имеет характер аппаратного решения.

Возможности:

  • Полоса пропускания 4,5 ГГц и максимальный коэффициент усиления по напряжению 30 дБ
  • Диапазон коэффициента усиления 32 дБ с цифровым управлением и шагом 1 дБ
  • Система преобразования несбалансированных сигналов в дифференциальные с входным сопротивлением 50 Ом для систем как без фильтрации постоянной составляющей, так и с ней
  • Выходная точка пересечения третьего порядка (OIP3) при сопротивлении нагрузки 50 Ом:
    • 40 дБм при частоте 500 МГц;
    • 33 дБм при частоте 1 ГГц
  • Возможность управления выходным синфазным напряжением: VMID ±0,5 В
  • Компактный проект, который идеально подходит для переносных устройств благодаря низкой рассеиваемой мощности 645 мВт

Документация:
  • Схемотехника
  • BOM
Описание:
С целью дополнительного увеличения диапазона, скорости передачи данных и надёжности современных систем мобильной связи системные разработчики продолжают уделять всё больше внимания системах передатчиков с несколькими антеннами, чтобы добиться одновременно пространственного разнесения и пространственного мультиплексирования. Подобные реализации характеризуются лучшей компенсацией потерь в тракте и эффекта многолучевого распространения сигналов в конкретной среде. Данные реализации также способствуют увеличению диапазона, скорости передачи данных и надёжности. Многоантенные системы с фазированными антенными решётками также позволяют лучше фокусировать энергию передатчика, и при увеличении диапазона передачи сигналов потенциально возможно уменьшить габариты антенны системы. Всё в большее количество систем мобильной связи и радарных систем интегрируют многоантенные передатчики.
В подобных реализациях многоантенной передатчиков каждому передатчику требуются цифро-аналоговые преобразователи (ЦАП) для преобразования цифровых бит в РЧ. Несколько передатчиков и соответствующая им антенна также должны быть синхронизованы по времени. В данном проекте может использоваться DAC3xJ8x с интерфейсом JESD204B подкласса 1, который имеет возможность синхронизации с несколькими устройствами DAC3xJ8x. DAC3xJ8x представляет собой высокоскоростной 16-битный ЦАП с частотой выборок до 2,8 GSPS. Возможности DAC3xJ8x позволяют упростить синхронизацию устройств и проектирование многоантенной системы передатчика.

Базовый проект имеет характер аппаратно-программного решения.
Возможности:

  • Высокоскоростная передача данных
  • Цифро-аналоговое преобразование с высокой частотой выборок
  • Поддержка интерфейса JESD204B подкласса 1
  • Возможность синхронизации нескольких устройств
  • Синхронизированное распределение тактовых сигналов

Документация:
  • Схемотехника
  • BOM
  • Топология платы
Описание:
This reference design provides an efficient power supply scheme to power-up the RF-sampling DAC38RF8x digital-to-analog data converter (DAC) without sacrificing performance and also reduces board area and BOM. The reference design uses both DC/DC switchers and an LDO to power-up the DAC38RF8x while achieving high analog performance (spurious and phase noise) and minimizing power efficiency trade-offs. The design method outlined here can be extended to the power supply design of other RF-sampling data converters.
Возможности:

Provides an Efficient Power Solution for RF-Sampling DACs Enables Optimal Spur and Phase Noise Performance Reduces Board Area Lowers Bill of Materials (BOM) Cost

Документация:
  • Даташит
  • Схемотехника
  • BOM
Описание:
The TIDA-01346 design uses two LMX2594 synthesizers in combination to produce lower noise than is possible with just one. By combining the output of two synthesizers that are in phase, a theoretical 3 dB phase noise benefit is possible due to the output power being 6 dB higher while the noise power is only 3 dB higher. The LMX2594 is an ideal synthesizer for this application as it has a SYNC feature that allows it to have deterministic and repeatable phase as well as a programmable phase that can be used to correct for any phase error due to trace mismatches or any other factors.
Возможности:

3 to 12.5 GHz Output Frequency 40-fs rms Jitter at 9GHz (100 Hz to 100 MHz)

Документация:
  • Схемотехника
  • BOM
  • Топология платы
Описание:
The TIDA-01405 design demonstrates an inverting power module (voltage inverter) to generate a –1.8V rail at up to 2A of current from a 3V to 15.2V input voltage. Such a negative voltage is required for many communications equipment systems as well as industrial equipment, such as test and measurement. Using the TPS82130 power module enables a very simple negative voltage inverter (inverting buck-boost) design to create a 1.8V negative output voltage at high 2A currents.
Возможности:

Simple Power Module Design Total Solution Size Less Than 50mm2 High Output Current of 2A (VIN ≥ 5V) Wide Input Voltage Range of 3V to 15.2V Low Noise (Less Than 10mV Output Ripple) 125°C Rated Solution

Документация:
  • Схемотехника
  • BOM
Описание:
The TIDA-01410 reference design uses two LMX2594 synthesizers to produce two outputs that are both coherent and adjustable in phase. Phase coherent outputs are useful for interleaving data converters and also for beam steering applications. This reference design has identical routing for both synthesizers so that it is easy to measure the phase between them.

Возможности:

Two outputs with coherent and adjustable phase Output frequency from 10 MHz to 15 GHz High output power

Документация:
  • Схемотехника
  • BOM
  • Топология платы
Описание:

Управление нагрузкой с низким сопротивлением с использованием прецизионного усилителя – важное требования во многих системах. Данной функции можно добиться с помощью силовых операционных усилителей, но цена подобного решения может быть непомерно высока. В данном прецизионном проекте от TIпоказывается, как можно добиться надёжного управления выходом с помощью прецизионного усилителя и простого бюджетного дискретного биполярного транзистора.

Данный базовый проект имеет характер аппаратного решения.

 

Возможности:

  • Увеличение выходного тока управления до 200 мА
  • Прецизионное управление напряжением на низкоимпедансной нагрузке
  • Бюджетная реализация

Документация:
  • Даташит
  • Схемотехника
  • BOM
  • Топология платы

Сравнение позиций

  • ()